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Abstract:Making-do, a decision to start a construction task despite knowing that its preconditions are not fully ready, is a complex dilemma
for construction managers. Managers’ previous making-do decisions and the resulting consequence, delay, can have a significant impact on
future making-do decisions. To understand how managers’ experience with delay impacts their making-do decision and how it is handled
differently in different countries, two surveys were administered, one in China and one in the United States (US), and 260 usable responses
were collected. This study used: (1) the Mann–Whitney U test to examine whether delaying task starting time, when lacking precondition
readiness, pays off with shorter delays; (2) a random forest approach to find important causes of delay that contribute to a making-do decision;
and (3) an entropy-based decision tree to determine how much uncertainty in making-do decisions can be reduced by knowing managers’
experience with delays in past projects. Results showed that in the United States, managers who preferred the making-do approach expe-
rienced up to 60% less task duration delay; whereas Chinese managers who preferred making-do experienced up to 100% more task duration
delay due to lack of readiness in labor, equipment, material, management, and information flow. The contributions to the body of knowledge
are the development of a random forest approach to quantitatively examine the relative importance of the causes of delay to the making-do
decision and to reveal the fundamental differences in culture and management traditions that cause the difference between the two countries.
The methods presented in this study will enable others to use a similar random forest approach repetitively for classification, prediction, and
variable selection problems in civil engineering. The findings of this study will help project managers better understand underlying factors
that trigger making-do decisions in China and the United States, and have more efficient collaboration and communication when they work on
projects located in a foreign country. DOI: 10.1061/(ASCE)ME.1943-5479.0000776. This work is made available under the terms of the
Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.
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Introduction

Making-do, a decision to start work despite knowing that the pre-
conditions are not fully ready, has been referred to as a type of waste
in construction projects (Koskela 2004). Making-do is complex and
difficult to avoid, given the uncertainty of construction site manage-
ment. It is also simultaneously both a rational and irrational decision
(Bølviken and Koskela 2016). Although making-do is a locally and
momentarily rational strategy for reducing waste, reasoning that it is
better to do something than to do nothing, in the long run it can be
counterproductive from the perspective of the production system,
and results in waste (Bølviken and Koskela 2016). Therefore, con-
struction managers are often faced with the dilemma of deciding
how ready is ready enough to start a task when not all of the pre-
conditions are met. The answer to this question depends heavily on
the project managers’ experience with previous making-do deci-
sions. Successful experience with on-time completion when starting
a task although the preconditions are not ready (making-do) encour-
ages more such practice. On the other hand, further delays when
making-do is applied adds doubt to project managers’ decisions
to implement making-do.

Previous research identified preconditions for the execution of
tasks and emphasized the importance of precondition readiness
(Ballard and Howell 1998; Koskela 2000; Jang and Kim 2008;
Lindhard and Wandahl 2012; Hamzeh et al. 2015; Wang et al. 2016;
Javanmardi et al. 2018), discussed triggers for making-do decisions
(Koskela 2004; Formoso et al. 2011; Pikas et al. 2012; Koskela et al.
2013), and studied the impact of making-do on project performance
(Formoso et al. 2011; Pikas et al. 2012; Neve and Wandahl 2018).
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However, it remains unclear to what extent project managers’ expe-
rience with delay shapes their future making-do decisions. The ob-
jectives of this study are to: (1) find out whether sacrificing starting
timewhen lacking precondition readiness pays off with less duration
delay; (2) identify the causes of delay and determine their relative
importance and contribution to making-do decisions; and (3) quan-
tify the amount of uncertainty that can be reduced in making-do
decisions by knowing managers’ delay experience associated with
various causes.

In order to address the research objectives, surveys were admin-
istered to government projects performed by civilian contractors
in China and the United States (US). The survey in China was dis-
tributed to 16 construction projects in Shandong Province in 2018
and collected 141 usable responses. The survey in the US was
distributed to 260 companies nationwide and collected 119 usable
responses (Wambeke et al. 2011). Based on the responses, the
Mann-Whitney U test was used to discover whether there was a sig-
nificant difference in duration delay experienced by managers who
chose making-do and those who did not. Using managers’ experi-
ence with starting time and duration delay as inputs and managers’
making-do preferences as outputs, important causes of delay and
their contribution to a making-do decision were identified.

Theoretical Framework for Making-Do and
Point of Departure

There is a lack of a coherent, consistent theoretical framework to
guide construction professionals as to what contributes to making-
do decisions or how experience with delay shapes managers’ de-
cisions on making-do. Developing the theoretical framework will
support development of better approaches to managing production
and workflow within and across construction projects. Although
the concept of flow is well defined and theories of flow were ex-
tensively developed in manufacturing (Sacks 2016), it is not the
case in construction. For example, the Theory of Swift (Shingo and
Dillon 1989), Theory of Constraints (Goldratt 1997), and Even
Flow (Schmenner and Swink 1998) all provide sound advice for
designing and managing manufacturing workflow. However, prog-
ress in the development of a theory of workflow and making-do
management is delayed in construction. Inspired by Factory Phys-
ics (Hopp and Spearman 1996), Bertelsen et al. (2006) introduced
Construction Physics as a comprehensive way of understanding
construction process from a flow perspective. It emphasizes the
seven prerequisite feeder flows. Koskela (2000) proposed seven
preconditions for the smooth execution of construction tasks: (1) ex-
ternal conditions (i.e., weather), (2) equipment availability, (3) labor
availability, (4) material availability, (5) prerequisite work readi-
ness, (6) space availability, and (7) design and working method
clarification. Lindhard and Wandahl (2012) recommended two ad-
ditional preconditions, safe working condition and known work-
ing condition. Koskela (2004), Formoso et al. (2011), Pikas et al.
(2012), and Koskela et al. (2013) discussed triggers for making-do
decisions. Formoso et al. (2011), Pikas et al. (2012), and Neve and
Wandahl (2018) studied the impact of making-do on project per-
formance. However, most of the research is descriptive in nature
and does not provide a way of making quantitative assessments
as to what contributes to making-do decision-making and the root
causes of those factors, which has inhibited the development of
theoretical framework on making-do and appropriate procedures
and tools to improve project performance.

The point to departure for this study is the current theory on con-
struction flow and research on making-do as described previously.
The purposes of this study are to investigate to what extent delaying

task starting time when lacking precondition readiness pays off
with less duration delay; which causes of delay are perceived as
important for making-do decisions; and how much uncertainty
in making-do decisions can be reduced by knowing managers’ ex-
periences of delay in previous projects. Construction project man-
agers understand and answer these questions differently based on
their previous project history and perception of the consequences
caused by making-do decision.

Literature Review

Making-Do

Making-do, as a waste, refers to a situation in which a task is started
without readiness of all its preconditions, or the execution of a task
is continued although the readiness of at least one precondition has
ceased (Koskela 2004). Conceptually, making-do is the opposite of
buffering. Whereas in buffering there is a positive waiting time for
preconditions to get ready before starting a task, in making-do that
waiting time is negative (Koskela 2004).

Formoso et al. (2011) stated that “making-do has a strong rela-
tionship with the concept of improvisation.” This is because when
people face a difficult and uncertain situation, they tend to use
whatever resources are available to reach their objectives (Cunha
2004). There are numerous factors that influence making-do deci-
sions; for example, perception of the state of readiness, maturity of
the work (Pikas et al. 2012), maintaining profitability by utilizing
resources (Koskela 2004; Pikas et al. 2012), starting the work just
to get the job (Koskela 2004), and lack of trust in, and pressure
from, an immediate response (Formoso et al. 2011; Koskela
2004). When choosing making-do, project managers believe that
by starting early, even with the lack of preconditions, the task will
also be completed earlier (Koskela 2004).

By collecting data from two case studies and performing
explanatory data analysis, Formoso et al. (2011) found: (1) the most
frequent types of making-do were related to the access and avail-
ability of working areas, temporary facilities, protection, and equip-
ment and tools; and (2) the main causes of making-do were the
ineffectiveness in providing adequate temporary facilities, poor
management of layout, space, or both, and insufficient information.
Other researchers have found an apparent correlation between ex-
cessive talking and making-do, concluding that excessive talking is
a valid making-do indicator (Neve and Wandahl 2018).

Formoso et al. (2011) identified the main impacts of making-
do on the performance of construction projects as material waste,
poor safety conditions, and reduced motivation. Pikas et al. (2012)
collected empirical data over 11 weeks at a large residential con-
struction project. They analyzed different scenarios based on task
go-no-go decisions and their outcomes (i.e., completed as planned,
successful but completed late, and unsuccessful or achieved partial
value). Pikas et al. (2012) found that 57% of cases (12 out of 21) in
which preconditions were not fully ready, some form of making-do
was attempted. Furthermore, they found that in half (50%) of the
cases of making-do, tasks were stopped before completion; there-
fore, full value was not achieved. Neve and Wandahl (2018)
actively participated in weekly Last Planner System (LPS) meet-
ings and conducted work sampling studies on six trades for three
housing refurbishment projects. They found that it is highly likely
that making-do is the prevailing reason for the low productivity in
refurbishment projects.

Previous research has emphasized the complexity of a making-do
decision, suggested stimulating factors behind making-do decisions,
and demonstrated the impact of making-do on project performance.
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However, there was limited empirical research that investigated how
project managers’ experience with task starting and duration delay
shapes their making-do decisions. Therefore, it is valuable to dem-
onstrate to what extent managers’ experiences contribute to their
making-do decisions.

Construction Task Delay

Lindhard (2014) defined construction task delay as negative varia-
tion, which occurs when a work task is completed after the dead-
line. Wambeke et al. (2011) used variation to measure task delay
and divided variation into task starting time variation and task du-
ration variation. Burr (2016) also proposed to divide task delay into
starting and duration delay. He referred to task delay as the “shift in
timing of the start, or finish of a discrete critical/noncritical activ-
ity” or “an increase in the duration of a discrete critical/noncritical
activity, or series of critical/noncritical activities.” This study di-
vided task delay into starting time delay and duration delay because
a task delay can be caused by a delayed start, extended duration, or
both. Task starting time delay is the difference between planned
starting time and actual starting time. Duration delay is the differ-
ence between planned task duration and actual duration. Dissecting
delay into two parts helps reveal the root causes.

Construction schedules are prone to a high level of delay due to
the dynamic environment. Delay can result from: (1) external causes
outside the project environment, such as extremeweather conditions
(El-Adaway 2012) and nonstationary market demand (Ahmad
1999; Barriga et al. 2005), and (2) internal causes related to the
project, such as workforce motivation (Han et al. 2008; Arashpour
et al. 2012) and quality issues causing rework (Josephson et al.
2002; Love and Smith 2003). Wambeke et al. (2011) administered
a nationwide survey in the US to identify the most prevalent causes
of task starting time and duration delay. By conducting an extensive
literature review, 50 causes of delay were identified and classified
further under eight precondition categories. The top 10 causes of
task starting time and duration delay in the US were found to
be: (1) turnaround time from engineers when there is a question
associated with a drawing, (2) completion of previous work,
(3) obtaining required permits, (4) quality of documents (errors
in design, drawings, or both), (5) rework, (6) socializing, (7) people
arriving late, leaving early, or both, (8) weather impacts, (9) lack of
crew skills, experience, or both, and (10) needing guidance, instruc-
tion, or both from a supervisor.

Lindhard et al. (2019) simulated 100 work tasks in 98 sequence
designs and found that arranging tasks in parallel increased waste
and reduced delay, and identified waste resulting from variation as
an additional cause of waste. Pan et al. (2019) examined the nature
of the constraints on productivity advancement in Singapore, Hong
Kong, and the United Kingdom (UK). They suggested essential
strategies to enhance on-time project delivery including introducing
mandatory buildability and constructability framework, promoting
collaborative procurement, and regulating the demand and supply
of foreign labor. Antoine et al. (2019) compared the project deliv-
ery methods of US highway projects and found that procurement,
studies required by the National Environmental Policy Act, and
right-of-way requirements are the key contributors to project delay.
Budayan (2019) studied how consultants and the public and private
sectors perceived delay causes in building-operate-transfer projects
in Turkey and found that the most important delay causes are re-
lated to uncertainties and changes. Private sector participants em-
phasized the importance of certainty on political and governmental
issues. The public sector gave more weight to a detailed feasibility
study and preliminary plan. Ghodrati et al. (2018) collected
data from 111 general construction projects and found that

communication and incentive programs have a strong positive re-
lationship with labor productivity and project schedule perfor-
mance. Tripathi and Jha (2018) collected 106 responses and found
that top management competence, experience, and performance are
the most important factors impacting construction organization and
project success. Recent research also found that urgency; presence
of a project management team in the design phase, the construction
phase, or both; and management conduct and interaction have an
impact on project delay and performance (Shen et al. 2018; Sun
et al. 2019; Safapour and Kermanshachi 2019).

Previous research has studied causes of task delay from various
perspectives. It is not clear, however, how managers’ past experi-
ence with delay impacts their estimation of future delay and level of
risk tolerance. It will be beneficial to understand the mechanism
between experienced delay and assessment of precondition readi-
ness for future tasks.

Random Forest

Random forest (RF) introduced by Breiman (2001) is a nonparamet-
ric supervised method of machine learning that uses an ensemble of
multiple classification and regression trees (CART) for classifica-
tion, prediction, and variable selection (James et al. 2013; Yeh et al.
2014).

RF has several advantages that makes it a suitable machine learn-
ing method for variable selection in this study. First, RF can handle
large numbers of input variables in a relatively small sample size
with missing values and avoid model over-fitting (Abdel-Rahman
et al. 2013; Liu et al. 2018). Second, because RF is a nonparametric
machine learning method, no assumptions are required to be made
about the type of relationship between input and target variables and
the distribution of those variables (Xie et al. 2017). Third, unlike
a single decision tree, RF does not suffer from instability problems
and it is more robust with respect to noises. Its algorithm combines
and averages results across a large set of decision trees (Breiman
2001; James et al. 2013). Fourth, with specific provisions, RF can
handle the multicollinearity problem among input variables (Strobl
et al. 2008; Neville and Tan 2014).

Xie et al. (2017) used RF and decision tree to predict the delin-
eation of evacuation zones in the 2050s and 2090s, based on the
predicted sea-level rises and changes of demoeconomic features.
Using 10% of data as the validation data set to evaluate model per-
formance, Xie et al. (2017) found that the RF outperforms the de-
cision tree in terms of the accuracy and Kappa statistic. Liu et al.
(2018) developed three models to evaluate the impact of outdoor
ambient environmental factors on scaffolding construction produc-
tivity: (1) a nonparametric regression model, (2) the generalized
additive model (GAM), and (3) a nonlinear machine learning RF
model. They concluded that because RF and GAM models dem-
onstrated better performance, the relationship between outdoor am-
bient environment and construction productivity is nonlinear and
should be built by nonlinear models. RF also has been used for
predicting safety accidents caused by excavation of deep founda-
tion pits in subway stations (Zhou and Feng 2014). Researchers
found that, in contrast to artificial neural nets (ANN) and Bayesian
networks (BN), RF could accurately predict the safety risks of sub-
way foundation pits based on safety risk level monitoring values,
using small and unbalanced data samples. The superiority of RF in
prediction and classification has been confirmed by other research
studies in construction management. Poh et al. (2018) used five
machine-learning methods to predict the occurrence and severity of
accidents on construction project sites based on input variables that
were project-related (such as project type and percent completed)
and safety inspection-related (such as crane operations, lifting

© ASCE 04020030-3 J. Manage. Eng.

 J. Manage. Eng., 2020, 36(4): 04020030 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

10
7.

15
.1

42
.2

01
 o

n 
11

/1
6/

20
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



operations, or both, and falling hazards, openings, or both). Those
machine learning methods were: decision tree, RF, logistic regres-
sion, K-nearest neighbor (KNN), and support vector machines
(SVM). During validation, it was found that RF provides the best
prediction performance with an accuracy of 78%.

Based on the literature review of the performance of previous
applications of RF, this study adopted the RF approach to analyze
project managers’ perceived delay and how it contributes to making-
do decisions. The contributions to the body of knowledge are:
(1) revealing construction managers’ perceptions on delay and how
that shapes their making-do decisions will contribute the theoretical
framework development for construction flow and making-do re-
search; (2) discovering the fundamental differences in culture and
the way projects are operated will be valuable for managers working
on international projects to enable more effective communication
with partners in foreign countries and take meaningful actions to
prevent and manage delays; and (3) developing a random forest ap-
proach to quantitatively examine how the relative importance of de-
lay cause contributes to the making-do decision will enable other
researchers to use the similar random forest approach repetitively
for classification, prediction, and variable selection problems in civil
engineering.

Research Methodology

Questionnaire Survey

In order to understand how project managers’ perception in delay
contributes to their making-do decision, the research team con-
ducted two surveys, one in China and another in the US. Each sur-
vey included three sections. The first section asked for background
information, including project location, size, and type, the type of
organization to which respondents belong, the number of employ-
ees in the organization, company size, and company revenue. It also
asked about the respondents’ background, such as position, years of
experience in construction, education, and number of subordinates.
The second section asked about the respondents’ preference regard-
ing making-do, i.e., whether they prefer to start work or to wait
when the preconditions (such as labor, material, and equipment)
are not fully ready. The third section asked for respondents’ expe-
rience with task starting time and duration delay [in terms of hours
per week (h=week)] due to specified individual causes of delay. The
survey for the US included 50 causes of delay and was conducted
by Wambeke et al. (2011).

The research team maintained the maximum level of similarity
between the surveys for China and the US, adjusting the questions
as needed to suit construction projects in the destination countries.
For example, the pilot study group in China suggested adding sum-
mer and autumn harvest as a factor in task starting time and duration
delay. Because most Chinese construction workers are from the
countryside and take about two weeks of leave during these seasons
to return to their hometown to harvest, starting time and duration of
construction tasks are subsequently impacted. There were 44
total causes of delay identified for the survey in China and 50
for the US.

Table 1 gives the 44 causes of task starting time and duration
delay in China and the 50 causes of task delay in the US. The de-
tails on how the causes were identified, categorized, and adjusted
for the research can be found in Wambeke et al. (2011). There are
34 common causes, 10 special causes in China, and 17 special
causes in the US.

The survey in China was distributed to 16 Special Grade con-
struction general contractors in Shandong Province from June 2018

to August 2018 and 141 usable responses were collected. The China
Ministry of Construction issued regulations to categorize con-
struction contractors into four grades: Special Grade and Grade A,
B, and C. The Special Grade standard is the highest and requires
contractors to have qualifications in net property value, adequate
number of qualified managers, engineers and technicians, and re-
cords of successful completion of certain types of projects. For ex-
ample, the standard for Special Grade general contractors is to
demonstrate that they have net assets of at least CNY 300 million
(USD 44 million), paid business tax of no less than CNY 50 million
(USD 7.3 million) each year for the proceeding three years, and
have at least 50 level-one registered constructors. There are a total
of 28 construction general contractors (GCs) at the Special Grade
level (Shandong Bureau of Statistics 2018). Sixteen GCs (57%)
were randomly selected to take the survey. More than half of the
surveys were conducted when the companies had annual meetings.
In those meetings, project managers working in other regions of
China and overseas participated the survey, which brings diverse
perspectives from the managers. The survey in the US was distrib-
uted to 260 contractors working in public projects nationwide and
received 119 usable responses (Wambeke et al. 2011).

Mann–Whitney U Test

The Mann–Whitney U test is a nonparametric test that compares
the central locations of two populations with similar-shape distri-
butions when there are two independent random samples drawn
from these populations. The Mann-Whitney U test was chosen for
this study because it is more robust than the t-test on nonnormal
distributions with any potential outliers (Lehmann 1999). Also, in-
stead of comparing the raw data directly, the Mann–Whitney U test
compares the ranked data (Newbold et al. 2012; Norušis 2012).
Mann–Whitney U’s null hypothesis is that there is no difference
in the central locations of the two populations under consideration,
assuming the populations have similar-shape distributions. In this
study, the null hypothesis is that there is no difference in the central
location of experienced duration delay between the two popula-
tions, those who choose making-do and those who do not.

In order to test the null hypothesis, the Mann–WhitneyU statistic
and Z value are calculated using the following formulas (Newbold
et al. 2012):

U ¼ n1n2 þ
n1ðn1 þ 1Þ

2
− R1 ð1Þ

where U = Mann–Whitney U; n1 = size of Sample 1 (i.e., managers
who choose making-do); n2 = size of Sample 2 (i.e., managers who
choose to wait); and R1 = sum of the ranks of Sample 1. Observa-
tions from the two samples are combined and ranked in ascending
order. If there are tied observations, the average of the ranks is as-
signed to all of them

EðUÞ ¼ μU ¼ n1n2
2

ð2Þ

where E(U) = expected value of U distribution given n1 and n2; and
μU = mean of the Mann–Whitney U distribution for Sample 1 and
Sample 2

VarðUÞ ¼ σ2
U ¼ n1n2ðn1 þ n2 þ 1Þ

12
ð3Þ

where Var(U) and σ2
U = variance of U distribution given n1 and n2

Z ¼ U − μU

σU
ð4Þ
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Eq. (4) is used to calculate the Z value, which is used to deter-
mine whether to reject or accept the null hypothesis according to
the chosen significance level of α. In this study, α is set at 0.05,
which is the probability of rejecting the null hypothesis when the
null hypothesis is true.

Random Forest

The RF approach was used to identify the important causes of de-
lay, which contribute most to reducing uncertainty in making-do
decisions. Fig. 1 shows the RF structure adopted for this study,
given an input–output dataset for n respondents. For example, the

Table 1. Causes for task starting time and duration delay

Category Cause of delay (China) Cause of delay (US)

1. Prerequisite
readiness

Obtaining required permits to start the work Obtaining required permits to start the work
Completion of previous work Completion of previous work
Quality check and prerequisites’ approval Rework being requiredb

— Poor quality of previous work
— Inspections for completed workb

2. Detailed
design

Constructability issues in design Design constructability
Design changes Errors in design or drawings
Insufficient drawings before starting constructiona Turnaround time from engineers
Long owner’s response timea Strict requirementsb

Long consultant’s response time Quality control requirementsb

Vague and unclear drawings detailsa Work complexity
Nonstandard and complex structure Work sequence or method is not well plannedb

Nonspecific construction method instructions Low degree of repetitionb

— Inadequate instruction on detailed working method
3. Labor force Summer and autumn harvesta Socializing (talking with fellow workers)b

Laborers were called out to other projects Absenteeismb

Not enough laborers People arriving late, leaving early, or bothb

Unstable labor force Low morale, lack of motivation, or bothb

Inexperienced labor Getting moved to another job, task, or both
— Crew size is inadequate
— Personnel turnover (i.e., new employees)
— Experience on similar tasks (i.e., learning curve)b

— Lack of skills, experience, or both of workers, crew, or both
— Language barrierb

4. Tools and
equipment

Elevator unavailabilitya Personnel lift (no operator, not the priority, maintenance)
Small equipment misplaced, or needing maintenancea Power tools (used by someone else, maintenance)b

Tower crane unavailability Crane or forklift (unavailable, no operator, maintenance)
Hand operated tools misplaced, or needing maintenance Hand tools (used by someone else, misplaced,

maintenance)
Vertical transportation machinery not available Other heavy equipment (i.e., loader) not available
Horizontal transportation machinery not available Personal protective equipment not availableb

5. Material and
components

Material moved twice Material needs to be moved
Late material delivery Material to arrive from distributor or supplier
Supplied material mismatch Trying to get consumablesb

Incorrect material size Error in material size
Incorrect material qualitya Error in material type

6. Job site
conditions

Overcrowded work area, job site congestion, or both Overcrowded work area, job site congestion, or both
Hard to reach work surface Difficult access to work area
Inconvenient layout, restricted field, or both Site layout (i.e., distance from material storage)
Poor traffic monitoring and controla —

7. Information
flow

Wait to get answer for design questions Wait to get answer for design questions
Geological survey does not match actual conditionsa Need guidance or instruction from supervisor
Not getting guidance from the supervisor Lack of field manager (foreman) skill, knowledge, or both
Insufficient management staff Coordination between different trades
Coordination issues among activities Overcommitment because of a tight work schedule
Overcommitment Foreman availability
Team leader lacks management skills Change in scope of work
Plan adjustment (change in scope of work) Foreman communication skills
Team leader lacks communication skills Communication between owner, engineer, or both, and

project manager
Poor communication among owner, designer, and
contractor

Communication between project manager and foremanb

Poor communication within the construction unit Communication between foreman and workers
8. Weather and
objective causes

Adverse weather (too cold, too hot, rainy, windy) Weather impacts (excessive heat, cold, wind, rain)
Objective causes (uncontrollable factors such as traffic
control, noise control, night construction, and
environmental management)a

aOnly for China.
bOnly for the US.
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141 responses from China included 88 continuous inputs (44 ex-
perienced weekly starting time delays and 44 duration delays)
and one binary output (making-do decision: yes or no). The RF
algorithm was implemented in the following steps as shown
in Fig. 1 (Breiman 2001; Adusumilli et al. 2013; James et al.
2013):
1. Randomly select 60% of the total available responses to grow a

tree. For the China survey, 60% of the total of 141 responses was
approximately 85. The remaining 56 responses are called an
out-of-bag (OOB) sample and are used subsequently for vari-
able selection.

2. Take the square root of the number of input variables to deter-
mine the number of candidate variables to build a tree. For
example, the number of input variables for the China survey
was 88 and the candidate variables used to build a tree was
9 ≃ ffiffiffiffiffi

88
p

.
3. Grow the tree using 85 randomly selected observations. To grow

a tree, the first step is to split a node by finding the best splitting
value for each of the nine randomly selected inputs using the
Gini Impurity Index, and then select the best input among
all inputs to split making-do values. For binary targets, the Gini
Index simplifies to 2p̂jð1 − p̂jÞ, where p̂j is the proportion of
the responses that fall into class j of the node under considera-
tion. Pure node has a Gini Index of zero. The process is repeated
until a tree is built to the maximum depth of five.

4. Repeat Step 3 until the specified number of trees (in this case
100) are grown.
This study used the random branch assignments (RBA) (Neville

and Tan 2014) method to compute the importance of causes of task
delay with respect to their ability to correctly classify the making-
do decisions. The main reason for using RBAwas that its algorithm
captures the true classification power of each input variable by han-
dling multicollinearity and avoiding bias towards correlated input
variables (Neville and Tan 2014).

The RBA method was implemented through the follow-
ing steps:
1. Classify OOB responses associated with each tree in RF.
2. Calculate the margin for each node, ω, in each tree. In the case of

a categorical target variable, margin is defined as “the probability
of the true class minus the maximum probability among the other

classes” (SAS Institute Inc. 2017). Margin can be calculated
using Eq. (5) (SAS Institute Inc. 2017; Breiman and Cutler 2003)

Margin ðωÞ ¼
XJ

j¼1

Njðp̂j −max
k≠j

p̂kÞ ð5Þ

where ω is an internal node of bth decision tree in the forest; J is
the number of classes in the categorical target variable (i.e., for
the binary making-do target J ¼ 2); j is a class of node ω; Nj
is the number of responses (observations) that fall into class j of
node ω; p̂j is the proportion of the responses that fall into class j
of node ω; k indicates other classes than j in node ω; and p̂k is
the proportion of the responses that fall into class k of node ω.
It should be mentioned that “a good model increases the margin”
(SAS Institute Inc. 2017). The algorithm steps for evaluating
variable importance are as follows:

1. Calculate margin increase for each tree. The amount of margin
increased by a tree is the difference between the margin of its
root node (first node) and sum of the margins of its leaf nodes
(end nodes).

2. Randomly assign OOB responses to the child nodes split by the
variable, k. The proportion for random assignment is the same as
the proportion of the observations that have fallen into child
nodes of the training tree split by the variable k.

3. Repeat Steps 1 and 2. Recompute the increase of margin for
each tree.

4. Calculate the difference between the original OOB margin in-
crease and the new OOB margin increase for each tree. The new
OOB margin increase would be almost certainly less than the
original OOB margin increase. This reduction in margin in-
crease is called margin reduction.

5. Average the margin reduction for the variable, k, over all trees
in RF.

6. Repeat Steps 4–5 for every input variable, k. The input variables
which result in the greatest margin reduction (greatest increase
in error) when they are involved in RBA are the most important
input variables.
This process assigns a RBA margin reduction value to each of

the causes of task starting time and duration delay, which represents
the relative importance of the causes of task delay for making-do
decisions.

Fig. 1. (Color) RF model for variable selection.
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Entropy and Information Gain

This study used the information theory method to analyze the un-
certainty reduction in making-do due to the amount of delay in each
cause. Entropy was calculated to measure the level of uncertainty.
The entropy of a random variable X, HðXÞ, is a measure of uncer-
tainty (or impurity) in the variable. Entropy is defined as follows
(Shannon 1948):

HðXÞ ¼
Xm

i¼1

pðxiÞlog2
1

pðxiÞ
bits ð6Þ

whereX = a discrete random variablewithm possible outcomes of xi;
and pðxiÞ = probability for the random variable, X, to have the value
of xi, xi ∈ fx1; x2; : : : ; xmg. Because entropy uses log base 2, the
units are binary digits (bits). The maximum entropy for a random
variable, X, with two possible outcomes (i.e., a binary variable) is
1.00 bit, which occurs when there are equal numbers of observations
for each of the two possible outcomes in the data set [or the
two possible outcomes have equal chance (50% probability) of hap-
pening] (Kelleher et al. 2015). The minimum entropy for a random
variable, X, with two (or more) possible outcomes is 0 bit, which
occurs when all the observations in data set have the same value
for X.

By calculating entropy values for the input variables, the amount
of information gained from each input variable will be able to be
measured. In the context of this study, information gain measures
the amount of information a cause of task delay provides about the
making-do decision outcome. To calculate information gain from
splitting a node in decision tree, entropy of the parent node (the
node to be split) is compared with the entropy of the child nodes
using Eq. (7) (Alfaro et al. 2019):

ΔHðω; jÞ ¼ HðωÞ −Xk

ν¼1

Nν

N
HðωνÞ ð7Þ

where ω = parent node in a decision tree; j = input variable used for
splitting ω; ΔHðω; jÞ = information gained from splitting ω and is
entropy of the parent node (ω); k = total number of child nodes

(for a binary split, k ¼ 2); N = number or responses (observations)
in the node ω; Nν = number or responses in the child node; ων =
proportion of responses in node ω in which variable j takes the
value ν and therefore falls into the child node, ων ; and HðωνÞ =
entropy of the child node ων . The second part in Eq. (7) is the ex-
pected amount of uncertainty (impurity) after splitting the responses
in node ω using the input variable j. Input variables that result in
more information gain are more important for predicting or classi-
fying the target variable. If an input variable is used in more than
one split in the decision tree, the total information gained by the
input variable is equal to the sum of information gained from each
split. In this study, information gain measures the extent to which
managers’ experience of task starting time and duration delay con-
tributes to the uncertainty reduction in their making-do decisions.

Analysis and Results

The research team collected 260 responses in China and 240 re-
sponses in the US. A two-step approach was taken to clean the data
and identify the usable responses. First, responses with less than
25% of the questions answered were removed. Second, the three-
times interquartile range (3×IQR) was used as a cut-off point for
removing outliers (Iglewicz and Hoaglin 1993). As a result, 141
and 119 useable responses were identified for the surveys in China
and the US, respectively.

Research Objective 1: Test Hypothesis That Managers
Who Choose Making-Do Experience Significantly More
Duration Delay

The Mann-Whitney U test was performed to determine whether
there are significant differences in the duration delay experienced
by managers who choose making-do and those who do not. Table 2
gives the significant differences in the duration delay from nine
causes experienced between the making-do and non-making-do
groups in China. The making-do group experienced higher dura-
tion delay for the nine causes as follows: (1) inexperienced labor,

Table 2. Average duration delay comparison based on making-do decision

Cause of delay Country

Average duration
delay making-do
(hour=week)

Average duration
delay not making-do

(hour=week)
P-value

(Mann-Whitney U)

Inexperienced labor China 1.15 0.71 0.026
Horizontal transportation China 0.53 0.35 0.040
Late material delivery China 0.97 0.57 0.019
Supplied material mismatch China 0.50 0.26 0.010
Incorrect material quality China 0.65 0.43 0.029
Insufficient management staff China 0.58 0.44 0.029
Overcommitment China 0.91 0.60 0.042
Poor communication between owner, designer, and GC China 0.88 0.73 0.044
Poor communication inside construction unit China 0.55 0.30 0.042
Obtaining required permits US 0.16 0.00 0.023
Design changes US 0.91 2.27 0.000
Vague and unclear drawings details US 0.37 0.96 0.006
Nonstandard and complex structure US 0.86 1.81 0.031
Nonspecific construction method instruction US 0.90 1.73 0.013
Socializing US 1.06 1.59 0.047
Absenteeism US 0.99 1.70 0.050
Low morale and lack of motivation US 0.39 0.74 0.042
Getting moved to another job, task, or both US 0.89 2.11 0.005
Experience on similar tasks US 0.61 1.37 0.003
Hand tools US 0.17 0.40 0.011
Difficult access to work area US 0.72 1.19 0.024
Poor communication between owner and project manager US 0.63 1.11 0.038

© ASCE 04020030-7 J. Manage. Eng.

 J. Manage. Eng., 2020, 36(4): 04020030 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

10
7.

15
.1

42
.2

01
 o

n 
11

/1
6/

20
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



(2) horizontal transportation, (3) late material delivery, (4) supplied
material mismatch, (5) incorrect material quality, (6) insufficient
management staff, (7) overcommitment, (8) poor communication
between owner, designer, and GC, and (9) poor communication in-
side construction unit. Overall there are usually adequate resources
available to resolve problems from the nine cases in a timely man-
ner. Therefore, it is considered worthwhile to wait until a task is
ready to be started. For example, although there has been a trend
toward skilled labor shortages in the Chinese construction industry,
labor dealers still have multiple resources to obtain and allocate
labor quickly with short notice. In China, labor dealers have long-
term partnerships with various types of specialty trades. When one
project needs more labor, dealers can allocate their workers to a job
site in hours. In addition, labor dealers collaborate and share work-
ers when needed. They can also hire freelance laborers from a labor
market. Therefore, when a project lacks experienced labor, waiting
until laborers are ready is practical. Adding more skilled laborers
reduces delay. In terms of a horizontal transportation problem, the
GC usually has adequate site managers and engineers ready to re-
solve the problem. Regarding issues related to material (delivery,
mismatch, quality), a large GC usually provides materials and has
its own material department, which orders materials in large quan-
tities. They are very selective when choosing suppliers, who are
also motivated to resolve problems in a timely manner to maintain
a good relationship with the GC for future business.

In the US, the results are the opposite. Managers who preferred
making-do experienced significantly less duration delay as a result
of the 12 causes given in Table 2. The only exception is obtaining
required permits. The US managers who choose making-do expe-
rienced up to 60% less duration delay as compared to managers
who did not choose making-do.

Research Objective 2: Determine Relative Importance
of Delay Causes’ Contribution to Making-Do Decisions

The data set for China included 88 input variables (44 for starting
time delay and 44 for duration delay) and one binary output var-
iable (making-do, 1 for yes, and 2 for no). The data set for the US
included 100 input variables and one output variable. The goal was
to find which input variables (causes of delay) provided more in-
formation about the values of the output variable (making-do).

In the first step, RF was utilized to select the important causes of
delay with respect to making-do. SAS Enterprise Miner (EM) 14.2
was used to run the RF algorithm. Fig. 2 shows the relationship be-
tween the number of input variables used in the tree model and
the performance of the tree model, which was measured by the mis-
classification rate. The results show that selecting the first 11 important
causes reduces the misclassification rate up to 21%. Adding 77 more
variables resulted in an additional reduction of 6% in the misclassi-
fication rate. Therefore, including the first 11 delay causes gives

the tree model the biggest bang for the buck. For the same reason,
11 causes were selected to build the decision tree model for the US.

To evaluate the relative importance of the selected causes of
task delay, this study: (1) calculated RBA margin reduction of the
delay causes for both countries (RBA margin reduction column in
Tables 3 and 4), and (2) scaled the RBAvalues by assigning 100 to
the highest RBA margin reduction (Variable importance column in
Tables 3 and 4).

In Table 3 the top four experienced delays that influenced
making-do decisions for managers in China are lack of readiness
in: (1) materials (material mismatch), (2) design and working
method (insufficient drawing details), (3) labor (inexperienced
workers), and (4) equipment (horizontal transport). Looking at
the US results (Table 4), however, the causes of task delay that

Fig. 2. (Color) Number of input variables and misclassification rate for decision tree model: (a) China; and (b) United States.

Table 3. RF variable importance calculation based on RBA margin
reduction for China

Cause of delay

Number
of splitting

rules

RBA
margin
reduction

Variable
importance

Material mismatch_S 59 0.0428 100
Insufficient drawing details_ S 32 0.0278 65
Inexperienced workers_D 30 0.0258 60
Horizontal transport_D 16 0.0241 56
Material mismatch_D 22 0.0229 54
Poor communication unit_D 34 0.0222 52
Incorrect material quality_D 22 0.0196 46
Vertical transport_S 52 0.0195 45
Incorrect material quality_S 11 0.0184 43
Design change_S 29 0.0181 42
Inconvenient layout_S 22 0.0169 40

Table 4. RF variable importance calculation based on RBA margin
reduction for the US

Cause of delay

Number
of splitting

rules

RBA
margin
reduction

Variable
importance

Design drawing error_D 38 0.0326 100
Lack instruction work method_S 39 0.0206 63
Access_S 16 0.0202 62
Question answer time_D 39 0.0196 60
Question answer time_S 45 0.0183 56
Quality control_D 18 0.0165 51
Worker experience_ D 36 0.0161 49
Wait for answer_D 31 0.0152 47
Rework_S 26 0.0148 45
Personal protective equipment_S 14 0.0146 45
Power tools_S 11 0.0122 37
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influence managers’ making-do decisions are more confined. Four
out of the five most important causes of delay that contribute to
making-do decisions belong to readiness of the design and working
method precondition, specifically the experienced amount of task
starting time (identified by _S) and task duration (identified by_D)
delay due to design drawing error, lack of instruction working
method, and question answer time.

Research Objective 3: Quantify the Amount of
Uncertainty That Can Be Reduced in Making-Do
Decisions by Knowing Managers’ Delay Experience
Associated with Various Causes

To calculate information gained from the 11 important causes of
delay identified in the previous section, two decision trees were
built, one for China and another for the US. For each split in the
trees, the entropy of the parent node was compared with the sum of
entropies of the child nodes and the amount of information gain was
calculated using Eq. (7). For example, the first split of the tree for
China was made based on the amount of starting time delay expe-
rienced due to material mismatch. Using Eq. (6) the entropy of the
parent node (Node 1) was equal to H1 ¼ −0.6241 × log2ð0.6241Þ−
0.3759 × log2ð0.3759Þ ¼ 0.9551 bits, in which 0.6241 (62.41%)
of respondents chose making-do and 0.3759 (37.59%) did not.
Similarly, the entropy values for child nodes, H2 and H3, were
0.9983 and 0.4855 bits, respectively. Using Eq. (7), information
gain from material mismatch_S was equal to H1 − ð103=141×
H2þ 38=141 × H3Þ ¼ 0.095 bits, as given in Table 5.

The amount of information gained from each of the delay causes
in the related trees is given in Table 5 (China) and Table 6 (US).
At the beginning before starting classification, there were 0.9551
bits of uncertainty about making-do in China and 0.7847 bits of
uncertainty about making-do in US. Every time a cause of delay
was used to split making-do responses, the remaining uncertainty
about the making-do decision was reduced. However, the tree mod-
els could not perfectly classify making-do responses. Therefore,

0.50 bits (and 0.36 bits) of uncertainty remained about whether
managers prefer making-do or not, despite knowing the amount
of delay they have experienced in the past.

The results given in Tables 5 and 6 are shown in Figs. 3(a and b)
to understand the extent precondition categories contribute to
a making-do decision. The percentage of contribution by each
precondition category to the reduction of overall uncertainty in
making-do is calculated by summing the information gain of causes
of delay that fall into one precondition category and dividing it by
the total uncertainty in making-do.

Fig. 3(a) shows that in China, availability of materials, design
and specifications, and labor are the top three preconditions influ-
encing managers’ making-do decisions. Also, Fig. 3(a) shows that
53% of uncertainty in making-do could not be explained by the
amount of delay Chinese managers have experienced in the past
due to lack of readiness in preconditions. The remaining uncertainty
about whether a Chinese manager is going to practice making-do
or not depends on other factors such as owner request, crew utiliza-
tion, and similar factors that were discussed in the literature review
section.

As expected from the results in the previous section, the main
precondition that determines whether a manager or crew leader in
the US practices making-do or not is the availability of design and
working method instructions. Compared to China, precondition
readiness contributes 8% more to managers, crew leaders, or both,
making-do decisions because 45% uncertainty is left after the US
managers’ experienced delay is uncovered.

Conclusions

In order to understand how the amount of task starting time and
duration delay experienced by managers influences their making-
do decisions, surveys were conducted in China and in the US.
Findings showed Chinese project managers are less likely to decide
making-do (62% chance) compared to their US counterparts (77%
chance). This could be related to the fact that making-do in China

Table 5. Uncertainty reduction in making-do by gaining information about experienced amount of delay due to the causes of delay in China

Cause of variation
Information gain

(bits)
Cumulative information

gain (bits)
Uncertainty

(bits)
Contribution to uncertainty

reduction (%)

— — — 0.9551 —
Material mismatch_S 0.095 0.095 0.8601 21.0
Insufficient drawing details_ S 0.0868 0.1818 0.7733 19.2
Design change_S 0.0721 0.2539 0.7012 15.9
Incorrect material quality_D 0.0721 0.326 0.6291 15.9
Inexperienced workers_D 0.0423 0.3683 0.5868 9.4
Inconvenient layout_S 0.0345 0.4028 0.5523 7.6
Incorrect material quality_S 0.0252 0.428 0.5271 5.6
Poor communication unit_D 0.0243 0.4523 0.5028 5.4

Table 6. Uncertainty reduction in making-do by gaining information about experienced amount of delay due to the causes of delay in the US

Cause of delay
Information gain

(bits)
Cumulative information

gain (bits)
Uncertainty

(bits)
Contribution to uncertainty

reduction (%)

— — — 0.7847 —
Design drawing error_D 0.0995 0.0995 0.6852 23.2
Rework_S 0.0821 0.1816 0.6031 19.2
Question answer time_S 0.0729 0.2545 0.5302 17.0
Wait for answer_D 0.0684 0.3229 0.4618 16.0
Lack instruction work method_S 0.0447 0.3676 0.4171 10.4
Access_S 0.0359 0.4035 0.3812 8.4
Worker experience_D 0.0247 0.4282 0.3565 5.8
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results in duration waste. Project managers in China, who prefer
making-do in situations where material, labor, and equipment are
not ready and the management, information flow system, or both,
are ineffective have experienced, on average, two times more delay
than project managers who preferred to wait for preconditions to be
ready. In the US, the results are completely the opposite, with
project managers who preferred making-do experiencing up to
60% less duration delay due to causes of delay that fall mainly into
the precondition categories of design and labor availability. By uti-
lizing RF and entropy-based decision tree, this study found that the
availability of material, detail design and working method, and labor
are the top three preconditions that contribute 20%, 17%, and 4%,
respectively, to managers’making-do decisions in China. In the US,
the top three preconditions are detail design and working method
availability, prerequisite readiness, and management, information
flow, or both, which contribute 28%, 10%, and 9%, respectively,
to managers’ making-do decisions.

This study is useful to project managers and is significant as it
outlines and illustrates a method of investigating whether sacrific-
ing starting time pays off with less duration delay, determines the
relative importance of delay cause contribution to making-do de-
cision, and identifies the underlying network and associated key
trades of a construction project based on spatial proximity.
Although this study is based upon comparing surveys in China
and the US, the methods presented are repeatable and will enable
others to develop a RF approach that is tailored for a specific aspect
of a project.

The survey in China was only conducted in one province,
whereas the survey in the US was nationwide. However, Shandong
province has over 100 million permanent residents, is the second
most populous province, and had the third highest gross domestic
product (GDP) in China in 2017 (USD 0.15 trillion). Therefore, the
survey result is broadly representative of China. Another limitation
of this study is the difference in timing of the two surveys. The
survey in China was conducted in 2018, whereas the survey in the
US was conducted in 2010. However, the findings are still useable
and beneficial because although economic conditions and construc-
tion technology have changed since 2010, management practice
and culture has not changed much, especially for government and
public projects performed by civilian contractors. This was con-
firmed by senior project managers in the interviews for validation.
In addition, the survey results were validated by senior project man-
agers in both countries. Therefore, although there could be some
differences due to scope and timing, it was still appropriate and

valuable to compare howmanagers perceive delay causes differently
in the surveys. The scope of this study is limited to government
projects performed by civilian contractors in China and the US.
Future research can perform a more in-depth analysis to find out
how ready is ready enough from Chinese and US project managers’
perspectives. Future findings will be highly valuable in terms of
understanding to what extent making-do thresholds are different
in different cultures.

Data Availability Statement

Some or all data, models, or code generated or used during the
study are available from the corresponding author by request.

Acknowledgments

This work was supported by the National Nature Science Founda-
tion of China [Grant No. 71671098].

References

Abdel-Rahman, E. M., F. B. Ahmed, and R. Ismail. 2013. “Random forest
regression and spectral band selection for estimating sugarcane leaf ni-
trogen concentration using EO-1 Hyperion hyperspectral data.” Int. J.
Remote Sens. 34 (2): 712–728. https://doi.org/10.1080/01431161.2012
.713142.

Adusumilli, S., D. Bhatt, H. Wang, P. Bhattacharya, and V. Devabhaktuni.
2013. “A low-cost INS/GPS integration methodology based on random
forest regression.” Expert Syst. Appl. 40 (11): 4653–4659. https://doi
.org/10.1016/j.eswa.2013.02.002.

Ahmad, I. 1999. “Managing, processing, and communicating information:
What A/E/C organizations should know.” J. Manage. Eng. 4 (15):
33–36. https://doi.org/10.1061/(ASCE)0742-597X(1999)15:4(33).

Alfaro, E., M. Gámez, and N. García. 2019. Ensemble classification meth-
ods with applications in R. Hoboken, NJ: Wiley.

Antoine, A. L. C., D. Alleman, and K. R. Molenaar. 2019. “Examination of
project duration, project intensity, and timing of cost certainty in high-
way project delivery methods.” J. Manage. Eng. 35 (1): 04018049.
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000661.

Arashpour, M., M. Shabanikia, and M. Arashpour. 2012. “Valuing the
contribution of knowledge-oriented workers to projects: A merit based
approach in the construction industry.” Australas. J. Constr. Econ.
Build. 12 (4): 1–12.

Fig. 3. (Color) Contribution of precondition categories to making-do: (a) China; and (b) United States.

© ASCE 04020030-10 J. Manage. Eng.

 J. Manage. Eng., 2020, 36(4): 04020030 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

10
7.

15
.1

42
.2

01
 o

n 
11

/1
6/

20
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1080/01431161.2012.713142
https://doi.org/10.1080/01431161.2012.713142
https://doi.org/10.1016/j.eswa.2013.02.002
https://doi.org/10.1016/j.eswa.2013.02.002
https://doi.org/10.1061/(ASCE)0742-597X(1999)15:4(33)
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000661


Ballard, G., and G. Howell. 1998. “Shielding production: Essential step in
production control.” J. Constr. Eng. Manage. 124 (1): 11–17. https://doi
.org/10.1061/(ASCE)0733-9364(1998)124:1(11).

Barriga, E. M., J. G. Jeong, M. Hastak, and M. Syal. 2005. “Material
control system for the manufactured housing industry.” J. Manage.
Eng. 21 (2): 91–98. https://doi.org/10.1061/(ASCE)0742-597X(2005)
21:2(91).

Bertelsen, S., L. Koskela, G. Henrich, and J. Rooke. 2006. “Critical flow:
Towards a construction flow theory.” In Proc., 14th Annual Conf. Int.
Group for Lean Construction, 1–12. San Diego: International Group for
Lean Construction.

Bølviken, T., and L. Koskela. 2016. “Why hasn’t waste reduction con-
quered construction?” In Proc., 24th Annual Conf. Int. Group for Lean
Construction. San Diego: International Group for Lean Construction.

Breiman, L. 2001. “Random forests.”Mach. Learn. 45 (1): 5–32. https://doi
.org/10.1023/A:1010933404324.

Breiman, L., and A. Cutler. 2003. “Manual—Setting up, using, and under-
standing random forests V4.0.” Accessed April 1, 2019. https://www
.stat.berkeley.edu/∼breiman/Using_random_forests_v4.0.pdf.

Budayan, C. 2019. “Evaluation of delay causes for BOT projects based
on perceptions of different stakeholders in Turkey.” J. Manage.
Eng. 35 (1): 04018057. https://doi.org/10.1061/(ASCE)ME.1943-5479
.0000668.

Burr, A. 2016. Delay and disruption in construction contracts. 5th ed.
New York: Informa Law from Routledge.

Cunha, M. P. 2004. Bricolage in organizations. Lisbon, Portugal: Instituto
Nova Fórum. Universidade Nova de Lisboa.

El-adaway, I. H. 2012. “Insurance pricing for windstorm-susceptible devel-
opments: Bootstrapping approach.” J. Manage. Eng. 28 (2): 96–103.
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000088.

Formoso, C. T., L. Sommer, L. J. Koskela, and E. L. Isatto. 2011. “An
exploratory study on the measurement and analysis of making-do in
construction sites.” In Proc. 19th Annual Conf. Int. Group for Lean
Construction, 236–246. San Diego: International Group for Lean
Construction.

Ghodrati, N., T. W. Yiu, S. Wilkinson, and M. Shahbazpour. 2018. “Role of
management strategies in improving labor productivity in general con-
struction projects in New Zealand: Managerial perspective.” J. Manage.
Eng. 34 (6): 04018035. https://doi.org/10.1061/(ASCE)ME.1943-5479
.0000641.

Goldratt, E. M. 1997. Critical chain. Great Barrington, MA: North River.
Hamzeh, F. R., E. Zankoul, and C. Rouhana. 2015. “How can ‘tasks made

ready’ during lookahead planning impact reliable workflow and project
duration?” Constr. Manage. Econ. 33 (4): 243–258. https://doi.org/10
.1080/01446193.2015.1047878.

Han, S. H., S. H. Park, E. J. Jin, H. Kim, and Y. K. Seong. 2008. “Critical
issues and possible solutions for motivating foreign construction work-
ers.” J. Manage. Eng. 24 (4): 217–226. https://doi.org/10.1061/(ASCE)
0742-597X(2008)24:4(217).

Hopp, W. J., and M. L. Spearman. 1996. Factory physics: Foundations of
manufacturing management. Irwin, PA: McGrow-Hill.

Iglewicz, B., and D. C. Hoaglin. 1993. How to detect and handle outliers.
Milwaukee, WI: American Society for Quality.

James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An introduction to
statistical learning. New York: Springer.

Jang, J. W., and Y. Kim. 2008. “Using the Kanban for construction pro-
duction and safety control.” In Proc., 15th Annual Conf. Int. Group
for Lean Construction, 519–528. San Diego: International Group for
Lean Construction.

Javanmardi, A., S. A. Abbasian-Hosseini, S. M. Hsiang, and M. Liu. 2018.
“Constraint removal and work plan reliability: A bridge project case
study.” In Proc. 26th Annual Conf. Int. Group for Lean Construction,
807–817. San Diego: International Group for Lean Construction.

Josephson, P.-E., B. Larsson, and H. Li. 2002. “Illustrative benchmarking re-
work and rework costs in Swedish construction industry.” J. Manage. Eng.
18 (2): 76–83. https://doi.org/10.1061/(ASCE)0742-597X(2002)18:2(76).

Kelleher, J. D., B. Mac Namee, and A. D’Arcy. 2015. Fundamentals of
machine learning for predictive data analytics: Algorithms, worked
examples, and case studies. Cambridge, MA: MIT Press.

Koskela, L. 2000. “An exploration towards a production theory and its
application to construction.” Doctoral dissertation. VTT Technical
Research Centre of Finland.

Koskela, L. 2004. “Making-do: The eighth category of waste.” In Proc.,
12th Annual Conf. Int. Group for Lean Construction, 1–10. San Diego:
International Group for Lean Construction.

Koskela, L., T. Bølviken, and J. Rooke. 2013. “Which are the wastes of
construction?” In Proc. 21st Annual Conf. Int. Group for Lean Con-
struction, 3–12. San Diego: International Group for Lean Construction.

Lehmann, E. L. 1999. Elements of large sample theory. New York: Springer.
Lindhard, S. 2014. “Understanding the effect of variation in a production

system.” J. Constr. Eng. Manage. 140 (11): 04014051. https://doi.org
/10.1061/(ASCE)CO.1943-7862.0000887.

Lindhard, S., F. Hamzeh, V. A. Gonzalez, S. Wandahl, and L. F. Ussing.
2019. “Impact of activity sequencing on reducing variability.” J. Constr.
Eng. Manage. 145 (3): 04019001. https://doi.org/10.1061/(ASCE)CO
.1943-7862.0001618.

Lindhard, S., and S. Wandahl. 2012. “Improving the making ready
process—Exploring the reconditions to work tasks in construction.” In
Proc., 20th Annual Conf. Int. Group for Lean Construction, 451–460.
San Diego: International Group for Lean Construction.

Liu, X., Y. Song, W. Yi, X. Wang, and J. Zhu. 2018. “Comparing the ran-
dom forest with the generalized additive model to evaluate the impacts
of outdoor ambient environmental factors on scaffolding construction
productivity.” J. Constr. Eng. Manage. 144 (6): 04018037. https://doi
.org/10.1061/(ASCE)CO.1943-7862.0001495.

Love, P. E. D., and J. Smith. 2003. “Benchmarking, benchaction, and
benchlearning: Rework mitigation in projects.” J. Manage. Eng. 19 (4):
147–159. https://doi.org/10.1061/(ASCE)0742-597X(2003)19:4(147).

Neve, H. H., and S. Wandahl. 2018. “Towards identifying making-do as
lead waste in refurbishment projects.” In Proc., 26th Annual Conf.
Int. Group for Lean Construction, 1354–1364. San Diego: International
Group for Lean Construction.

Neville, P. G., and P. Y. Tan. 2014. “A forest measure of variable importance
resistant to correlations.” In Proc., 2014 Joint Statistical Meetings.
Alexandria, VA: American Statistical Association.

Newbold, P., W. Carlson, and B. M. Thorne. 2012. Statistics for business
and economics. Upper Saddle River, NJ: Prentice Hall.

Norušis, M. J. 2011. IBM SPSS statistics 19 statistical procedures
companion. Upper Saddle River, NJ: Prentice Hall.

Pan, W., L. Chen, and W. Zhan. 2019. “PESTEL analysis of construction
productivity enhancement strategies: A case study of three economies.”
J. Manage. Eng. 35 (1): 05018013. https://doi.org/10.1061/(ASCE)ME
.1943-5479.0000662.

Pikas, E., R. Sacks, and V. Priven. 2012. “Go or no-go decisions at the
construction workface: Uncertainty, perceptions of readiness, making
ready and making-do.” In Proc., 20th Annual Conf. Int. Group for Lean
Construction, 431–440. New York: Taylor & Francis.

Poh, C. Q., C. U. Ubeynarayana, and Y. M. Goh. 2018. “Safety leading
indicators for construction sites: A machine learning approach.” Auto.
Constr. 93 (9): 375–386.

Sacks. 2016. “What constitutes good production flow in construction?”
Constr. Manage. Econ. 34 (9): 641–656. https://doi.org/10.1080
/01446193.2016.1200733.

Safapour, E., and S. Kermanshachi. 2019. “Identifying early indicators of
manageable rework causes and selecting mitigating best practices for
construction.” J. Manage. Eng. 35 (2): 04018060. https://doi.org/10
.1061/(ASCE)ME.1943-5479.0000669.

SAS (Statistical Analysis System) Institute Inc. 2017. SAS enterprise miner
14.3: High-performance procedures. Cary, NC: SAS Institute.

Schmenner, R. W., and M. L. Swink. 1998. “On theory in operations
management.” J. Oper. Manage. 17 (1): 97–113. https://doi.org/10
.1016/S0272-6963(98)00028-X.

Shandong Bureau of Statistics. 2018. Shandong statistical yearbook 2018.
Shandong, China: China Statistics Press.

Shannon, C. 1948. “A mathematical theory of communication.” Bell Syst.
Tech. J. 27 (1): 379–423.

Shen, W., B. Choi, S. Lee, W. Tang, and C. T. Haas. 2018. “How to improve
interface management behaviors in EPC projects: Roles of formal

© ASCE 04020030-11 J. Manage. Eng.

 J. Manage. Eng., 2020, 36(4): 04020030 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

10
7.

15
.1

42
.2

01
 o

n 
11

/1
6/

20
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)0733-9364(1998)124:1(11)
https://doi.org/10.1061/(ASCE)0733-9364(1998)124:1(11)
https://doi.org/10.1061/(ASCE)0742-597X(2005)21:2(91)
https://doi.org/10.1061/(ASCE)0742-597X(2005)21:2(91)
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://www.stat.berkeley.edu/%7Ebreiman/Using_random_forests_v4.0.pdf
https://www.stat.berkeley.edu/%7Ebreiman/Using_random_forests_v4.0.pdf
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000668
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000668
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000088
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000641
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000641
https://doi.org/10.1080/01446193.2015.1047878
https://doi.org/10.1080/01446193.2015.1047878
https://doi.org/10.1061/(ASCE)0742-597X(2008)24:4(217)
https://doi.org/10.1061/(ASCE)0742-597X(2008)24:4(217)
https://doi.org/10.1061/(ASCE)0742-597X(2002)18:2(76)
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000887
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000887
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001618
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001618
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001495
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001495
https://doi.org/10.1061/(ASCE)0742-597X(2003)19:4(147)
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000662
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000662
https://doi.org/10.1080/01446193.2016.1200733
https://doi.org/10.1080/01446193.2016.1200733
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000669
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000669
https://doi.org/10.1016/S0272-6963(98)00028-X
https://doi.org/10.1016/S0272-6963(98)00028-X


practices and social norms.” J. Manage. Eng. 34 (6): 04018032. https://
doi.org/10.1061/(ASCE)ME.1943-5479.0000639.

Shingo, S., and A. P. Dillon. 1989. A study of the Toyota production system:
From an industrial engineering viewpoint. Produce what is needed,
when it’s needed. New York: Taylor & Francis.

Strobl, C., A. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. 2008.
“Conditional variable importance for random forests.” BMC Bioinfor-
matics 9 (7): 307–317. https://doi.org/10.1186/1471-2105-9-307.

Sun, J., X. Ren, and C. J. Anumba. 2019. “Analysis of knowledge-transfer
mechanisms in construction project cooperation networks.” J. Manage.
Eng. 35 (2): 04018061. https://doi.org/10.1061/(ASCE)ME.1943-5479
.0000663.

Tripathi, K. K., and K. N. Jha. 2018. “Determining success factors for a
construction organization: A structural equation modeling approach.”
J. Manage. Eng. 34 (1): 04017050. https://doi.org/10.1061/(ASCE)ME
.1943-5479.0000569.

Wambeke, B. W., S. M. Hsiang, and M. Liu. 2011. “Causes of variation in
construction project task starting times and duration.” J. Constr. Eng.
Manage. 137 (9): 663–677. https://doi.org/10.1061/(ASCE)CO.1943
-7862.0000342.

Wang, J., W. Shou, X. Wang, and P. Wu. 2016. “Developing and evaluating
a framework of total constraint management for improving workflow in
liquefied natural gas construction.” Constr. Manage. Econ. 34 (12):
859–874. https://doi.org/10.1080/01446193.2016.1227460.

Xie, K., K. Ozbay, Y. Zhu, and H. Yang. 2017. “Evacuation zone modeling
under climate change: A data-driven method.” J. Infrastruct. Syst.
23 (4): 04017013. https://doi.org/10.1061/(ASCE)IS.1943-555X.00
00369.

Yeh, C. C., D. J. Chi, and Y. R. Lin. 2014. “Going-concern prediction using
hybrid random forests and rough set approach.” Inf. Sci. 254: 98–110.
https://doi.org/10.1016/j.ins.2013.07.011.

Zhou, Z., and J. Feng. 2014. “Deep forest.” Nat. Sci. Rev. 6 (1): 74–86.

© ASCE 04020030-12 J. Manage. Eng.

 J. Manage. Eng., 2020, 36(4): 04020030 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

10
7.

15
.1

42
.2

01
 o

n 
11

/1
6/

20
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)ME.1943-5479.0000639
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000639
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000663
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000663
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000569
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000569
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000342
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000342
https://doi.org/10.1080/01446193.2016.1227460
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000369
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000369
https://doi.org/10.1016/j.ins.2013.07.011

